| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | ||||||
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| 30 |
- 오블완
- 스마트 컨트렉트 함수이름 중복
- 러스트 기초
- cloud hsm 서명
- redux 기초
- cloud hsm 사용하기
- git rebase
- 스마트컨트렉트 예약어 함수이름 중복
- ethers websocket
- ethers typescript
- erc4337
- vue기초
- 머신러닝기초
- erc4337 contract
- 스마트컨트렉트 함수이름 중복 호출
- 체인의정석
- 계정추상화
- redux toolkit 설명
- rust 기초
- 컨트렉트 동일한 함수이름 호출
- 러스트기초
- Vue
- Vue.js
- 러스트 기초 학습
- SBT표준
- cloud hsm
- ethers type
- ambiguous function description
- 티스토리챌린지
- ethers v6
- Today
- Total
목록전체 글 (529)
체인의정석
1. 3항 연산자 활용 3항 연산자는 다음과 같다. 조건 ? 결과1 : 결과2 조건에 맞을 경우 결과 1을 조건에 맞지 않을 경우 결과2의 값이 나오게된다. 이는 값을 체크해서 undefined가 뜰 경우 공백으로 바꾸어 준 후 넘길때 사용할 수 있다. 서버에서 넘겨준 값이 ejs에 있는안에 에러가 날 수 있기 때문에 이때 써주거나 체크박스값을 중복 선택할때 db의 각 칼럼 값이 비는것을 막기위하여 공백으로 써줄대 사용할 수 있다. "company_mailnum":rows[0].company_mailnum == undefined ? "" : rows[0].company_mailnum, 2. 객체로 넘긴 후 바로 사용 페이지 로딩시 데이터가 들어가 있어야 되는 상태라면 data값을 일일히 검사해서 넘길 필..
js grid 에서 rowClick 설정 값을 쓰면 js grid의 한 행을 클릭했을 때 작동할 함수를 쓸 수 있다. rowClick: function(args) { console.log(args) console.log(args.item.demand_idx) sendurl(args.item.demand_idx); }, rowClick안에 들어오는 args값을 콘솔로그로 찍어보면 js grid에 있는 모든 열값을 가져올 수 있다. 여기서 인덱스에 해당하는 정보를 가져온 뒤 이를 통하여 링크로 연결해주는 sendurl함수를 만들어 준다. function sendurl(didx){ location.href = "/techdemand_details?didx=" + didx; }; location.href를 통하..
Uncaught TypeError: $(…).modal is not a function 개발 도중 다음과 같은 에러가 발생하여 modal이 작동하지 않았다. 이 에러의 경우 jquery를 include에서 한번 빼서 썼으나 한번 더 써서 나온 에러로 jquery를 없애고 나니 오류가 해결되었다. jquery를 이처럼 2번 정의하면 오류가 발생하니 유의하는것이 좋을 것 같다. IT 유튜브 타임해커 보러가기 www.youtube.com/channel/UCHsRy47P2KlE749oAAjb0Yg?view_as=subscriber 타임해커 -블록체인/인공지능 -웹개발(프론트/백) -광고(페이스북/구글/네이버) -사업계획서 작성 -비전공생을 위한 IT 공부법 채널이름은 기획,마케팅,개발을 다 같이해서 업무성과를 ..
나이브 베이즈 분류기는 선형 모델과 유사하며 선형 분류기 보다 훈련 속도가 빠르지만, 일반화 성능이 조금 뒤지는 문제가 있습니다. 사이킷 런에서 구현된 나이브 베이즈 분류기는 연속적인 어떠한 데이터에도 적용할 수 있는 GaussinanNB, 이진데이터에 적용할 수 있는 BernoulliNB, 카운트 데이터에 적용되는 MultinomialNB의 3개 입니다. BernoulliNB와 MultinomialNB는 대부분 텍스트 데이터를 분류할 때 사용합니다. BernoulliNB분류기는 다음과 같습니다. X= np.array([ [0,1,0,1], [1,0,1,1], [0,0,0,1], [1,0,1,0] ]) y=np.array([0,1,0,1]) 이진 특성을 4개 가진 데이터 포인트 를 X로 두고 이에 대한 ..
plt.plot(line) 로지스틱 회귀를 제외한 많은 선형 분류 모델은 태생적으로 이진 분류만을 지원합니다. 다중클래스는 지원하지 않습니다. 이진 분류 알고리즘을 다중 클래스 분류 알고리즘으로 확장하는 보편적인 기법은 일대다 방법입니다. 일대다 방식은 클래스의 수만큼 이진 분류가 발생하게 됩니다. 3개의 클래스를 가진 데이터셋에 일대다 방식을 적용해 보겠습니다. from sklearn.datasets import make_blobs X,y = make_blobs(random_state=42) mglearn.discrete_scatter(X[:,0],X[:,1],y) plt.xlabel("특성 0") plt.ylabel("특성 1") plt.legend(["클래스 0", "클래스 1", "클래스 2"])..
로지스틱 회귀 & 서포트 벡터 머신이 가장 널리 알려진 두 개의 선형 분류 알고리즘 일단 아래의 코드는 모든 예제에서 넣어주기로 합니다. from IPython.display import display import numpy as np import matplotlib.pyplot as plt import pandas as pd import mglearn import sklearn from sklearn.datasets import make_blobs plt.rc('font', family='NanumGothic') plt.rcParams['axes.unicode_minus'] = False 서포트 백터 머신과, 로지스틱 회귀를 비교하기 위해 아래와 같이 설정하였습니다. 여기서 만들어진 경계를 결정 경계라..
회귀 중 특성이 하나인 회귀는 선형 모델을 일차 함수를 생각하면 됩니다. y=ax+b 에서 y는 예측값이 되게 됩니다. 이떄 a와 b는 모델이 학습할 파라미터 입니다. 한마디로 a와 b의 값을 적절히 조절해 가며 정답에 가까운 파라미터를 고르는것이 머신러닝이라 할 수 있겠습니다. 여기서 a는 기울기 입니다. 특성이 많아지게 되면 각각 입력 특성 x에 따라서 가중치 a를 곱한만큼에 b라는 값을 더한만큼이 예측값으로 나오게 됩니다. mglearn.plots.plot_linear_regression_wave() 회귀를 위한 선형 모델에서 특성이 하나일땐 직선, 2개일때는 평면, 3개 이상일때는 초평면이 되게 됩니다. K이웃근접법과 비교해 보았을때 선으로 분류하는것은 매우 단순해 보이지만 특성을 많이 넣게 되면..
우선 들어가기에 앞서서 잘 모르고 있던 파이썬 문법을 학습해 보았습니다. for 문에 변수가 2개인 경우입니다. https://ponyozzang.tistory.com/578 Python for문 변수 2개 사용 방법 for 문을 사용하다 보면 인덱스가 2개 필요한 경우가 있습니다. 인덱스가 2개 필요한 경우에는 for 문에도 변수를 2개 설정을 해줘야 합니다. for 문에서 변수를 2개 설정하는 방법을 예제로 알아보� ponyozzang.tistory.com 여러개의 오브젝트나 리스트 등을 for 문에서 동시에 사용하고 싶은 경우에는 zip 함수를 사용해 반복문을 실행할 수 있습니다. for 문에 2개의 리스트를 지정한 경우에는 변수도 2개를 설정해야 합니다. names = ['Alice', 'Bob'..